Extending Life Cycle Models of Optimal Portfolio Choice:

Integrating Flexible Work, Endogenous Retirement, and Investment Decisions with Lifetime Payouts

Oct. 2009, Tokyo

Jingjing Chai, Wolfram J. Horneff, Raimond H. Maurer, Olivia S. Mitchell

The Unsolved Question

What is the impact on life cycle HH portfolio choice of allowing choice over

- \rightarrow retirement;
- \rightarrow work hours;

With *endogenous* saving, consumption, asset allocation (stocks/bonds), asset location (annuities/liquid saving). Given:

- Bonds and risky stocks;
- Variable/Fixed payout life annuities; and
- Risky human capital.

3 Strands of Related Literature

Public finance Laitner 2003. "Labor Supply Responses to Social Security."

MRRC WP 2003-050.

- Retirement/labor supply endogenous; seek to explain age 62 peak;
- Usually silent on optimal investment patterns.

Finance Cocco/Gomes/Maenhout. 2005. "Consumption and Portfolio Choice over the Life Cycle," RFS.

- Endogenous asset allocation: bonds vs stocks;
- Work/retirement usually exogenous and no mortality risk;
- Often predict unreasonably high equity holdings.

Insurance economics Mitchell et al. 1999. "New Evidence on the

Money Worth of Individual Annuities," AER

- Annuity: provides lifetime payout (hedge for mortality risk) in exchange for illiquidity;
- If alive, "survival credit" enhances payout;
- Fixed payout or variable (latter can include stock/bond mix).
- Understudied in finance/pub finance literature

The Multi-Period Life-Cycle Model

(more next slides)

Derive optimal consumption, leisure, investment portfolio (stocks, bonds, and payout annuities), labor supply, and retirement age over the life cycle (age 20-100) by numerical dynamic optimization.

Market Structure

Capital market:

- Riskless bond pretax real annual return 2%
- Risky stocks: log return-> normally distributed with mean real return 6% p.a. and standard deviation 18%
- Asset income tax 20%
- Annuity market:
 - Immediate fixed/variable payouts for life
 - US female annuitant mortality;
 - Insurers (industry practice): AIR = 2%, Loading 2.38%
 - Annuity income tax 20%

Housing expenditure: deterministic

Labor Income Process

- When working: wage rate * hours (1-leisure)
 - ✓ Working income stochastic
 - ✓ Middle class worker
- When retire: Social Security benefits depend on retirement age v.s. NRA, & earnings;

If retire < NRA: benefit permanently reduced;</p>

✓ If retire ≥ NRA: benefit permanently increased

 Taxes: on pre-retirement labor income 30%, on Soc Sec benefits 15%.

Numerical Solution

- Four state variables: cash on hand, annuity payouts from previously purchased annuities (normalized by permanent labor earnings level), retirement age, and age;
- Optimization: backward induction (using Gaussian quadrature integration and cubicsplines interpolation);
- Simulation: 10,000 paths

Optimal Exp. Consumption, Labor Income, and Saving: <u>Fix hours</u>, endog ret, no annuity mkt.

- Saving until 47; assets peak at 55
- Labor income hump-shaped until 65, then most claim Soc. Sec.
- Consump. drops post retirement
- But F smoother because of more leisure (depends on leisure + cons.)

Optimal Exp. Consumption, Labor Income, and Saving: <u>Flexible hours</u>, endog ret, no annuity mkt.

- Labor income hump-shaped to 65.
- Most take Soc Sec benefits > 65.
- Saving until 47; assets peak at 55.
- Consump. drops post-retirement.
- But F smoother because of more leisure (depends on leisure + cons.)

Fig. 4

Optimal Exp. Consumption, Labor Income, and Saving: <u>Flexible hours</u>, endog ret, variable annuities.

- As before, labor income humpshaped & most take Soc Sec > 65.
- Liquid saving has new shape...
- ✓ Annuities bought from age 40→67; buying peaks in late 40's.
- Variable ann's help support consumption prior to Soc Sec.

Fig. 7b

Fig 5: Implausibly high equity exposure at age 80 due to endogenous retirement;
Fig 8: More plausible: liquid equity % falls in midlife; buy annuities from 45, hold little liquid wealth, and receive substantial Soc Sec supplement.

Welfare analysis of more flexibility and annuity access (computed from age 20)

Work	Retirement	Annuity	Relativ	e Utility	Welfare Gain: % of
Hours	Age	Market	Gai	n (%)	1st yr Labor Income
				(a)	(b)
(0) <i>Fixed</i>	Fixed	No	R	eference	Reference
(1) Fixed	Flexible	No		4.4	49.5
(2) Flexible	Flexible	No		6.6	61.3
			:		
(4) Flexible	Flexible	Yes		7.0	62.4

 Large welfare gains from flexible work and flexible retirement age.

 Access to annuity markets less important given flexible hours.

Impact of Annuities given Flexible Hours and Endogenous Retirement

	Retirement Rate				
Age	(%)				
	No	With			
	Annuities	Annuities			
62	0	5.0			
63	0	3.4			
64	0	6.0			
65	0	3.8			
66	10.5	40.2			
67	32.5	41.6			
68	24.5	0			
69	17.1	0			
70	15.5	0			

Access to private annuity markets allows households to retire much earlier.

Sensitivity analysis: Impact on Retirement Ages of Age-Dependent Leisure Preferences (health declines) and Lower Risk Aversion

Note: Retirement age peaks at 62 consistent with evidence. Also sensible dispersion of retirement ages.

Interaction between Retirement Age, Labor Supply, Stock Return: <u>Flexible hours</u>, endog ret, variable annuities.

Conclusions/Contributions

First to explore interactions between asset location, asset allocation, work hours, **and** retirement behavior in life cycle context with annuities and capital market.

We show:

- Making labor supply endogenous <u>increases work effort of</u> the young and raises older persons' equity share.
- Investment decisions important for labor supply and retirement behavior and vice versa.
- Participation ratio in capital markets for elderly low, if no access to annuity markets
- Introducing annuities <u>permits earlier retirement and</u> <u>higher participation by the elderly</u> in financial markets.
- Substantial <u>lifetime welfare gains of 7% (> 60% of first-</u> year earnings).

Future Research

- More on preferences:
 - Age-dependent parameters to model health declines.
 - Habit formation, "less rational", participation cost, etc.
- More detail on Social Security benefits and taxes (def. annuities / def. taxation)
- Housing
- Role of product development and interaction with financial literacy.

And what do "real people" do...

Henry Allingham, for one month, the oldest living man in the world (age 113).

His portfolio: "cigarettes, whiskey and wild, wild women."

http://www.bbc.co.uk/southerncounties/content/image_galleries/allingham_gallery.shtml?11

Thank you.

Questions or comments?

Backups

Sensitivity: Leisure and risk preferences

Gomes et al.'08 AER MCD utility: portfolio mix OK but retirement pattern implausible. Our age-dependent α and plausible ρ yield reasonable portfolios & retirement patterns.

Labor Income: Pre-retirement

With retirement between 62 and 70 (choice):

$$Y_{t} = (1 - h(t))(1 - t^{l})(1 - L_{t})\exp(w(t))E_{t}u_{t},$$

- Y: disposable labor earnings after-tax after-housing expenditures (as % of pretax income);
- 1-L: work hours as % of available worktime;
- w: deterministic function allows for (empirically observed) hump-shape earnings profile.
- E: permanent labor earnings component with innovation n(t); n(t) permanent shock uncorrelated with transitory u(t).

$$E_t = E_{t-1}n_t,$$

- Log of n and u ~ N(0, σ_n and σ_u).
- Zero correlation between labor and stock market shocks.

Labor Income: Post-retirement

• After-tax Social Security real benefits:

$$Y_{t} = (1 - h(t)) \left(1 - t^{r}\right) \left(\frac{\sum_{t=1}^{K} (1 - \bar{L}) \exp(w(t))}{K}\right) E_{K} \zeta F_{\tau,NRA}$$

Where

1 - L = average fraction of time worked;

K = years worked;

 ζ = Soc. Sec. repl. rate fn of normal retirement age (NRA);

 $F_{\tau,NRA}$ = actuarial reduction (*increase*) factor for retiring before (*working after*) the NRA.

Model Calibration

Calibration

- Life Span: 20->100;
- Leisure preference: α = 0.59 in the base case; (mean of the age-dependent profile used in Buchinsky et.al. 2000 and close to Laitner 2003 's value)
- One-period survival rate: US 1996 population 2000 table for female;
- Deterministic component of the wage rate process; (Fehr et.al. 2006)
- Wage Rate Shocks; (Gomes et.al.'08 AER);
- Replacement ratio: $\zeta = 0.55$. (Mitchell and Phillips '06)