Consideration of the structures and techniques of risk sharing in cash balance pension plans

Yoshinori Ueta

$\widehat{\text { ISCPA }}$

Contents

1. Introduction of CBP in Japan
2. Japanese CBP and NAC
3. Structure of Risk Sharing
4. Structure of BRP
5. Future tasks
6. Introduction of CBP in Japan (1)

Japanese Corporate Pension Scheme

Date	Corporate Pension Scheme
$1962-$ 2012	Tax-Qualified Pension Plan (TQPP)
$1966-$	Employee's Pension Fund (EPF)
$2001.10-$	Defined Contribution Pension Plan (DB)
$2002.4-$	Defined Benefit Corporate Pension Plan (DC)

1. Introduction of CBP in Japan (2)

Japanese Corporate Pension Scheme Reform

After 2001

1. Introduction of CBP in Japan (3)

Cash Balance Pension Plan(CBP)

Defined Benefits Corporate Pension Act(DB Act)

EPF•DB
\Rightarrow Permitted to design benefits by CBP

TQPP

\Rightarrow Not permitted to design benefits by CBP

1. Introduction of CBP in Japan (4)

In case of transfer of TQPP,
plan sponsors have chosen CBP in many cases.

Reason:

- This choise results in the mitigation of the volatility of the projected benefit obligation (PBO).
- When the economic environment turns bad, the benefits by CBPs will not grow as much in comparison with the conventional defined benefit pension plans.

1. Introduction of CBP in Japan (5)
-Review of risk sharing (Investment Risk)

Perfect Storm(2000-2002)
\Rightarrow DB Act and DC Act were enacted.
(Permitted to design benefits by CBP)

Subprime Crisis • Lehman Shock(2007-2008)
\Rightarrow JSCPA began to examine expansion of the Hybrid-type Pension Plan, including Benchmark Related Pension Plans (BRPs).
2. Japanese CBP and NAC (1)

NAC $=\Sigma$ Notional principal credits $+\Sigma$ Interest credits

IInterest credits : Don't decrease

2. Japanese CBP and NAC (2)

Amount of annuity

2. Japanese CBP and NAC (3)

Revaluation rate (in Japan)
<legally-recognized options>
(1) Fixed rate
(2) the interest rate of the government bond etc. (Consumer Price Index, Wage rate Index)
(3) Combination of (1) and (2)
(4) (2) or (3) provided that this choice dose not go beyond the upper or lower bounds
Don't fall below O
\Rightarrow In many cases, the yield of the government bond is used.
2. Japanese CBP and NAC (4)

Other features

- In many cases, for coefficient according to retirement reason,
lump sum benefits decreases more than NAC.
- In many cases, Temporary annuity
(Not whole life annuity)

3. Structure of Risk Sharing (1)

Risks in Pension Plan (1)

Investment Risk

<DB>

this risk is that the plan sponsor might be required to pay an additional burden when RORs fall below the expected $R O R$ assumed in contribution calculations

<DC>

this risk is that the employee's future benefit might become smaller than expected when the actual RORs fall below the expected RORs

ROR : rate of investment return

Reference : Shimizu Nobuhiro[2006],
"Reinventing the Risk Sharing Mechanism of Defined Benefit Pension Plans"
3. Structure of Risk Sharing (2)

Risks in Pension Plan (2)

Longevity Risk (Annuity Conversion Risk)
<plan sponsor> (whole life annuity)
this risk is that
the actual amount of annuities every year exceeds the amount of the expectation
when the results mortality rate to fall below the expected one because the annuitants live long.

> <employees and pension recipients> (temporary annuity) this risk is that
> the original capital for old age is insufficient
> when they live longer than one expects and that financial capital to maintain their livelihoods in old age might need to be increased.
3. Structure of Risk Sharing (3)

Risks in Pension Plan (3)

Mortality rate improvement Risk

This risk is that
the plan sponsor might be required to pay an additional burden
when mortality rates might improve beyond expectation and future benefits might be higher than expected.

3. Structure of Risk Sharing (4)

Risks in Pension Plan (4)

Earnings Increase Risk

```
<plan sponsor>
This risk is that
the plan sponsor might be required to pay an additional burden
when earnings increase faster than expected and future benefits
are higher than expected.
    (This risk becomes larger in final earnings pension plans. )
```

<pension recipients>
this risk is that
the income substitution rate for the real wages might fall
when the wage of active employees rises.
<employees>
this risk is that
the income substitution rate for the real wages might fall
when the wage growth rate is less than the inflation rate.
3. Structure of Risk Sharing (5)

Risks in Pension Plan (5)

Inflation Risk

This risk is that
the real value of benefits might be reduced due to inflation.
(this risk becomes large in such cases where the amounts of benefits are proportionate to one' s career average earnings and past earnings are not revalued.)

Default Risk

This risk is that
the rights of participants to receive benefits might be partially or completely lost
when the plan sponsor becomes insolvent and the pension plan is forced to be terminated or to be dissolved.
3. Structure of Risk Sharing (6)

Risk Sharing in CBP

Investment Risk
Ernings Increase Risk
\Rightarrow Those Risks are improved in comparison to the final earnings pension plan.
4. Structure of BRP (1)

Problem of CBP

Benefits :
change according to the yield curve

Asset management :

ROR can't completely synchronize
with the yield curve used.
\Rightarrow Investment Risk: plan sponsor

4. Structure of BRP (2)

Benchmark Related Plan(BRP)
[Under consideration in JSCPA]
Difference point with CBP

- Revaluation rate

Combined benchmark index rate of return
\Rightarrow Employees and plan sponsor mutual agreement

- Interest credits

It is possible to fall below O .
Lower bound of Σ Interest credits : O

- Amount of annuity
a different of method for deciding the amount of the annuity

4. Structure of BRP (3)

NAC $=\Sigma$ Notional principal credits $+\Sigma$ Interest credits
Lower bound of Σ Interest credits : O

4. Structure of BRP (4)

Amount of annuity
(Temporary annuity)

This paper's Method annuity amount =NAC / current price rate

JSCPA Report's Method annuity amount
=NAC / residual period

Appendix Example of Amount of Annuity Changing in BRP
Example 1
Method for Deciding the Amount of the Annuity: This Paper's Method
(Temporary Annuity(guaranteed period: 15 years))

Example 2

Method for Deciding the Amount of the Annuity: JSCPA Report's Method
(Temporary Annuity(guaranteed period: 15 years))

YearResidual period (at end of previous year)	CBROR	Notional principal credit part	Interest credit part	Total	Notional principal credit part	Interest credit part	Total	
	15	3.0%	$1,500,000$	$1,500,000$	$3,000,000$	100,000	100,000	200,000
	14	3.0%	$1,400,000$	$1,490,000$	$2,890,000$	100,000	106,429	206,429
3	13	3.0%	$1,300,000$	$1,470,271$	$2,770,271$	100,000	113,098	213,098
4	12	3.0%	$1,200,000$	$1,440,281$	$2,640,281$	100,000	120,023	220,023
5	11	3.0%	$1,100,000$	$1,399,466$	$2,499,466$	100,000	127,224	227,224
6	10	3.0%	$1,000,000$	$1,347,226$	$2,347,226$	100,000	134,723	234,723
7	9	3.0%	900,000	$1,282,920$	$2,182,920$	100,000	142,547	242,547
8	8	3.0%	800,000	$1,205,861$	$2,005,861$	100,000	150,733	250,733
9	7	3.0%	700,000	$1,115,304$	$1,815,304$	100,000	159,329	259,329
10	6	3.0%	600,000	$1,010,434$	$1,610,434$	100,000	168,406	268,406
11	5	3.0%	500,000	890,341	$1,390,341$	100,000	178,068	278,068
12	4	3.0%	400,000	753,983	$1,153,983$	100,000	188,496	288,496
13	3	3.0%	300,000	600,106	900,106	100,000	200,035	300,035
14	2	3.0%	200,000	427,074	627,074	100,000	213,537	313,537
15	1	3.0%	100,000	232,349	332,349	100,000	232,349	332,349

minmum:
maximum:
average:

100,000
232,349
155,666

Example 3

Method for Deciding the Amount of the Annuity: This Paper's Method
(Temporary Annuity(guaranteed period: 15 years))

Year	Residual period (at end of previous year)	CBROR	Notional principal credit part	Interest credit part	Total	Notional principal credit part	Interest credit part	Total
	15	-10.0%	$1,500,000$	$1,500,000$	$3,000,000$	100,000	128,898	228,898
2	14	-10.0%	$1,400,000$	$1,071,102$	$2,471,102$	100,000	100,116	200,116
3	13	-10.0%	$1,300,000$	723,876	$2,023,876$	100,000	74,844	174,844
4	12	-10.0%	$1,200,000$	446,644	$1,646,644$	100,000	52,653	152,653
5	11	-10.0%	$1,100,000$	229,327	$1,329,327$	100,000	33,165	133,165
6	10	-10.0%	$1,000,000$	63,229	$1,063,229$	100,000	16,045	116,045
7	9	-10.0%	900,000	0	900,000	100,000	0	100,000
8	8	-10.0%	800,000	0	800,000	100,000	0	100,000
9	7	-10.0%	700,000	0	700,000	100,000	0	100,000
10	6	-10.0%	600,000	0	600,000	100,000	0	100,000
11	5	-10.0%	500,000	0	500,000	100,000	0	100,000
12	4	-10.0%	400,000	0	400,000	100,000	0	100,000
13	3	-10.0%	300,000	0	300,000	100,000	0	100,000
14	2	-10.0%	200,000	0	200,000	100,000	0	100,000
15	1	-10.0%	100,000	0	100,000	100,000	0	100,000

Example 4

Method for Deciding the Amount of the Annuity: JSCPA Report's Method (Temporary Annuity(guaranteed period: 15 years))

Year	Residual period (at end of previous year)	CBROR	NAC (at end of previous year) principal credit part		Interest credit part		Total	Notional principal credit part		Interest credit part	Total
		-10.0%	$1,500,000$	$1,500,000$	$3,000,000$	100,000	100,000	200,000			
	14	-10.0%	$1,400,000$	$1,100,000$	$2,500,000$	100,000	78,571	178,571			
3	13	-10.0%	$1,300,000$	771,429	$2,071,429$	100,000	59,341	159,341			
4	12	-10.0%	$1,200,000$	504,945	$1,704,945$	100,000	42,079	142,079			
5	11	-10.0%	$1,100,000$	292,372	$1,392,372$	100,000	26,579	126,579			
6	10	-10.0%	$1,000,000$	126,556	$1,126,556$	100,000	12,656	112,656			
7	9	-10.0%	900,000	1,244	901,244	100,000	138	100,138			
8	8	-10.0%	800,000	0	800,000	100,000	0	100,000			
9	7	-10.0%	700,000	0	700,000	100,000	0	100,000			
10	6	-10.0%	600,000	0	600,000	100,000	0	100,000			
11	5	-10.0%	500,000	0	500,000	100,000	0	100,000			
12	4	-10.0%	400,000	0	400,000	100,000	0	100,000			
13	3	-10.0%	300,000	0	300,000	100,000	0	100,000			
14	2	-10.0%	200,000	0	200,000	100,000	0	100,000			
15	1	-10.0%	100,000	0	100,000	100,000	0	100,000			

5. Future tasks

- Countermeasure of the fluctuation of benefit by economic environment before the time of resignation
- Lower Bound of NAC (at The Time of Resignation) and Annuity
- Method for Calculating Liability in Pension Financing and Retirement Benefit Accounting
- Further review of risk sharing (Countermeasure of Longevity Risk)

